Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface

Identifieur interne : 000153 ( Chine/Analysis ); précédent : 000152; suivant : 000154

Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface

Auteurs : RBID : Pascal:13-0330485

Descripteurs français

English descriptors

Abstract

In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/ acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C60)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C60 are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C60 interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C60 side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C60 interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0330485

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface</title>
<author>
<name>LIJIA CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Clean Energy and Advanced Materials, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QIAOMING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physical Science and Technology, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YANLIAN LEI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physical Science and Technology, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FURONG ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University</s1>
<s2>Kowloon Tong</s2>
<s3>HKG</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon Tong</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BO WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University</s1>
<s2>Kowloon Tong</s2>
<s3>HKG</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon Tong</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physical Science and Technology, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GUOXI NIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physical Science and Technology, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZUHONG XIONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physical Science and Technology, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QUNLIANG SONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Clean Energy and Advanced Materials, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0330485</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0330485 INIST</idno>
<idno type="RBID">Pascal:13-0330485</idno>
<idno type="wicri:Area/Main/Corpus">000637</idno>
<idno type="wicri:Area/Main/Repository">000737</idno>
<idno type="wicri:Area/Chine/Extraction">000153</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1463-9076</idno>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron interaction</term>
<term>Interface</term>
<term>Semiconductor materials</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Interaction électronique</term>
<term>Semiconducteur</term>
<term>Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/ acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C
<sub>60</sub>
)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C
<sub>60</sub>
are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C
<sub>60</sub>
interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C
<sub>60</sub>
side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C
<sub>60</sub>
interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-9076</s0>
</fA01>
<fA03 i2="1">
<s0>PCCP, Phys. chem. chem. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>39</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIJIA CHEN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>QIAOMING ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YANLIAN LEI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FURONG ZHU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BO WU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TING ZHANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GUOXI NIU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZUHONG XIONG</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>QUNLIANG SONG</s1>
</fA11>
<fA14 i1="01">
<s1>Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Clean Energy and Advanced Materials, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Physical Science and Technology, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University</s1>
<s2>Kowloon Tong</s2>
<s3>HKG</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>16891-16897</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26801</s2>
<s5>354000501997370620</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0330485</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>PCCP. Physical chemistry chemical physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/ acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C
<sub>60</sub>
)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C
<sub>60</sub>
are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C
<sub>60</sub>
interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C
<sub>60</sub>
side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C
<sub>60</sub>
interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01I</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Interaction électronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electron interaction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Interacción electrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Interface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>03</s5>
</fC03>
<fN21>
<s1>308</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000153 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000153 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0330485
   |texte=   Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024